Dorota Olszewska-Słonina | Skin Penetration Enhancers | Best Researcher Award

Prof. Dr. Dorota Olszewska-Słonina | Skin Penetration Enhancers | Best Researcher Award

Head Of Department Of Pathobiochemistry And Clinical Chemistry | Collegium Medicum Of Nicolaus Copernicus University | Poland

Dr. Dorota M. Olszewska-Słonina is a distinguished researcher at the Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland, where she contributes extensively to biomedical and nutritional sciences. With a strong foundation in biochemistry and human physiology, she has dedicated her career to understanding the biochemical mechanisms underlying nutrition, health, and disease prevention. Her primary research areas include antioxidant mechanisms, phenolic compounds, the human milk microbiome, and bioactive components in plant-based foods. Dr. Olszewska-Słonina’s work explores how naturally occurring compounds can improve human health, enhance skin function, and prevent oxidative stress-related disorders. Her recent publications have examined topics such as the phenolic profiles and antioxidant properties of Morus alba L. infusions, composition and antioxidant status of vegan milk, and modifications of ion transport in skin microenvironments due to cryoconservation. To date, she has authored 85 peer-reviewed scientific papers, which have collectively received 1,023 citations, reflecting her research influence and recognition in the global scientific community. With an h-index of 15 and collaborations with over 170 international co-authors, Dr. Olszewska-Słonina exemplifies excellence in multidisciplinary and cross-institutional research. Her studies are frequently published in high-impact journals such as Scientific Reports, Antioxidants, Nutrients, Biology, and the Journal of Ethnopharmacology. Dr. Olszewska-Słonina also contributes to the academic community through her involvement in editorial and peer-review activities, ensuring the integrity and quality of scientific literature. Her research has meaningful societal implications, promoting sustainable nutrition, maternal health, and evidence-based approaches to natural product development.

Profiles: Scopus | ORCID

Publications

1. Olszewska-Słonina, D. M., et al. (2025). Phenolic profiles and antioxidant activity of Morus alba L. infusions prepared from commercially available products and naturally collected leaves. Scientific Reports.

2. Olszewska-Słonina, D. M., et al. (2025). Cryoconservation modifies ion transport pathways in the skin microenvironment: An in vitro study. Processes.

3. Olszewska-Słonina, D. M., et al. (2025). Human milk microbiome  in from Polish women giving birth via vaginal delivery—Pilot study. Biology.

4. Olszewska-Słonina, D. M., et al. (2024). Composition and antioxidant status of human milk of women living in Bydgoszcz (Poland). Nutrients.

5. Olszewska-Słonina, D. M., et al. (2024). The Eleutherococcus senticosus fruits' intractum affects changes in the transepithelial electric potential in the distal section of the rabbit's large intestine and inhibits hyaluronidase. Journal of Ethnopharmacology.

Zhenyan Xia | Skin Penetration Enhancers | Best Researcher Award

Dr. Zhenyan Xia | Skin Penetration Enhancers | Best Researcher Award

Doctor | Tianjin University | China

Dr. Zhenyan Xia is a distinguished researcher specializing in surface engineering, fluid dynamics, and nanomaterials, with a particular focus on the interaction of liquids with super hydrophobic surfaces. His research explores the intricate dynamics of droplet impact, energy dissipation, and wetting behavior on micro- and nano-structured materials, contributing significantly to advancements in energy-efficient coatings and functional material design. Over the course of his scientific career, Dr. Xia has authored and co-authored 175 peer-reviewed publications that collectively have received 25 academic documents, reflecting his growing influence in materials science and fluid mechanics. His work, such as studies on the “effect of super hydrophobic surfaces with circular rings on droplet impact” and “nanodroplet contact dynamics on square ridges,” has advanced theoretical and computational understanding of wetting phenomena at both macro and nanoscale levels. With an h-index of 7, Dr. Xia’s research output demonstrates both consistency and impact. He has actively collaborated with 37 international co-authors, fostering cross-disciplinary research that bridges materials science, computational modeling, and applied physics. His studies, have practical implications for microfluidic systems, anti-icing technologies, and self-cleaning materials. Dr. Xia’s academic contributions extend beyond publications; they represent a meaningful impact on industrial and environmental applications by promoting sustainable technologies through advanced material surface engineering. His research continues to inspire innovations in energy systems and fluid-material interaction science on a global scale.

Profiles: Scopus | ORCID

Publications

1. Shi, H., Hou, X., Xu, H., Bai, Y., & Xia, Z. (2024). An analysis of the contact time of nanodroplets impacting super hydrophobic surfaces with square ridges. Computational Materials Science.

2. Tai, Y., Xu, H., Bai, Y., Li, L., Wang, S., & Xia, Z. (2022). Experimental investigation of the impact of viscous droplets on super hydrophobic surfaces. Physics of Fluids.

3. Tai, Y., Zhao, Y., Guo, X., Li, L., Wang, S., & Xia, Z. (2021). Research on the contact time of a bouncing microdroplet with lattice Boltzmann method. Physics of Fluids.

4. Xia, Z. (2025). The effect of super hydrophobic surfaces with circular ring on the contact time of droplet impact. Colloids and Surfaces A: Physicochemical and Engineering Aspects.